Processing math: 100%
Poznański Portal Matematyczny

Twierdzenie Morleya

Autor: Bartosz Naskręcki

Niniejszym wpisem inicjujemy serię animacji i interaktywnych modułów, które ilustrują ciekawe twierdzenia, obiekty i problemy matematyczne.

W tym odcinku prezentujemy zdumiewające twierdzenie dotyczące zwyczajnego trójkąta na płaszczyźnie i należące do klasycznej geometrii płaszczyzny, lecz udowodnione dopiero w 1899 roku przez brytyjskiego matematyka Franka Morleya.

morleyprev

Twierdzenie (Frank Morley, 1899):

Niech dany będzie trójkąt dowolny ΔABC na płaszczyźnie. Prowadzimy z kątów A, B, C po dwie półproste. Pary półprostych wyznaczają trójpodział każdego z kątów. Półproste z dwóch sąsiadujących kątów przecinają się w punkcie. Trójkąt utworzony z trzech punktów przecięcia jest zawsze równoboczny.

Dowód tego twierdzenia można wykonać na wiele różnych interesujących sposobów. Poniżej przedstawiamy moduł, który obrazuje możliwe ustawienia trójkąta względem ustalonego trójkąta. Poruszając szarymi celownikami można uzyskać dowolny układ trzech punktów i przekonać się, że zawsze uzyskany trójkąt będzie równoboczny.

Ta strona wykorzystuje pliki cookies

Ta strona wykorzystuje pliki cookies do zapewniania najwyższej wygody korzystania z serwisu. Te same pliki mogą być wykorzystywane przez współpracujące z nami firmy w celach badawczych. Jeśli wyrażasz zgodę na nasze działania, zamknij ten komunikat. Pamiętaj, że zawsze możesz wyłączyć obsługę plików cookies w swojej przeglądarce.

Zamknij